skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miller, Jacob"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When visualizing a high-dimensional dataset, dimension reduction techniques are commonly employed which provide a single 2 dimensional view of the data. We describe ENS-t-SNE: an algorithm for Embedding Neighborhoods Simultaneously that generalizes the t-Stochastic Neighborhood Embedding approach. By using different viewpoints in ENS-t-SNE’s 3D embedding, one can visualize different types of clusters within the same high-dimensional dataset. This enables the viewer to see and keep track of the different types of clusters, which is harder to do when providing multiple 2D embeddings, where corresponding points cannot be easily identified. We illustrate the utility of ENS-t-SNE with real-world applications and provide an extensive quantitative evaluation with datasets of different types and sizes. 
    more » « less
  2. Superconducting qubits provide a promising approach to large-scale fault-tolerant quantum computing. However, qubit connectivity on a planar surface is typically restricted to only a few neighboring qubits. Achieving longer-range and more flexible connectivity, which is particularly appealing in light of recent developments in error-correcting codes, however, usually involves complex multilayer packaging and external cabling, which is resource intensive and can impose fidelity limitations. Here, we propose and realize a high-speed on-chip quantum processor that supports reconfigurable all-to-all coupling with a large on-off ratio. We implement the design in a four-node quantum processor, built with a modular design comprising a wiring substrate coupled to two separate qubit-bearing substrates, each including two single-qubit nodes. We use this device to demonstrate reconfigurable controlled- Z gates across all qubit pairs, with a benchmarked average fidelity of 96.00 % ± 0.08 % and best fidelity of 97.14 % ± 0.07 % , limited mainly by dephasing in the qubits. We also generate multiqubit entanglement, distributed across the separate modules, demonstrating GHZ-3 and GHZ-4 states with fidelities of 88.15 % ± 0.24 % and 75.18 % ± 0.11 % , respectively. This approach promises efficient scaling to larger-scale quantum circuits and offers a pathway for implementing quantum algorithms and error-correction schemes that benefit from enhanced qubit connectivity. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. We present a method for balancing between the Local and Global Structures ( L G S ) in graph embedding, via a tunable parame- ter. Some embedding methods aim to capture global structures, while others attempt to preserve local neighborhoods. Few methods attempt to do both, and it is not always possible to capture well both local and global information in two dimensions, which is where most graph drawing live. The choice of using a local or a global embedding for visualization depends not only on the task but also on the structure of the underly-ing data, which may not be known in advance. For a given graph, L G S aims to find a good balance between the local and global structure to preserve. We evaluate the performance of L G S with synthetic and real- world datasets and our results indicate that it is competitive with the state-of-the-art methods, using established quality metrics such as stress and neighborhood preservation. We introduce a novel quality metric, cluster distance preservation, to assess intermediate structure capture. All source-code, datasets, experiments and analysis are available online. 
    more » « less
  4. In circuit quantum electrodynamics, qubits are typically measured using dispersively coupled readout resonators. Coupling between each readout resonator and its electrical environment, however, reduces the qubit lifetime via the Purcell effect. Inserting a Purcell filter counters this effect while maintaining high readout fidelity but reduces measurement bandwidth and, thus, limits multiplexing readout capacity. In this Letter, we develop and implement a multi-stage bandpass Purcell filter that yields better qubit protection while simultaneously increasing measurement bandwidth and multiplexed capacity. We report on the experimental performance of our transmission-line-based implementation of this approach, a flexible design that can easily be integrated with current scaled-up, long coherence time superconducting quantum processors. 
    more » « less
  5. Abstract The neuroanatomical changes that underpin cognitive development are of major interest in neuroscience. Of the many aspects of neuroanatomy to consider, tertiary sulci are particularly attractive as they emerge last in gestation, show a protracted development after birth, and are either human- or hominoid-specific. Thus, they are ideal targets for exploring morphological-cognitive relationships with cognitive skills that also show protracted development such as working memory (WM). Yet, the relationship between sulcal morphology and WM is unknown—either in development or more generally. To fill this gap, we adopted a data-driven approach with cross-validation to examine the relationship between sulcal depth in lateral prefrontal cortex (LPFC) and verbal WM in 60 children and adolescents between ages 6 and 18. These analyses identified 9 left, and no right, LPFC sulci (of which 7 were tertiary) whose depth predicted verbal WM performance above and beyond the effect of age. Most of these sulci are located within and around contours of previously proposed functional parcellations of LPFC. This sulcal depth model outperformed models with age or cortical thickness. Together, these findings build empirical support for a classic theory that tertiary sulci serve as landmarks in association cortices that contribute to late-maturing human cognitive abilities. 
    more » « less